Distributed Machine Learning over Networks

Monday, September 28, 2020 - 11:00am to 12:00pm

Event Calendar Category

LIDS Seminar Series

Speaker Name

Francis Bach


Institut National de Recherche en Sciences et Technologies du Numérique (INRIA)

Zoom meeting id

977 0529 8528

Join Zoom meeting



The success of machine learning models is in part due to their capacity to train on large amounts of data. Distributed systems are the common way to process more data than one computer can store, but they can also be used to increase the pace at which models are trained by splitting the work among many computing nodes. In this talk, I will study the corresponding problem of minimizing a sum of functions which are respectively accessible by separate nodes in a network. New centralized and decentralized algorithms will be presented, together with their convergence guarantees in deterministic and stochastic convex settings, leading to optimal algorithms for this particular class of distributed optimization problems.


Francis Bach is a researcher at Inria, leading since 2011 the machine learning team which is part of the Computer Science department at Ecole Normale Supérieure. He graduated from Ecole Polytechnique in 1997 and completed his Ph.D. in Computer Science at U.C. Berkeley in 2005, working with Professor Michael Jordan. He spent two years in the Mathematical Morphology group at Ecole des Mines de Paris, then he joined the computer vision project-team at Inria/Ecole Normale Supérieure from 2007 to 2010. Francis Bach is primarily interested in machine learning, and especially in sparse methods, kernel-based learning, large-scale optimization, computer vision and signal processing. He obtained in 2009 a Starting Grant and in 2016 a Consolidator Grant from the European Research Council, and received the Inria young researcher prize in 2012, the ICML test-of-time award in 2014, as well as the Lagrange prize in continuous optimization in 2018, and the Jean-Jacques Moreau prize in 2019. He was elected in 2020 at the French Academy of Sciences. In 2015, he was program co-chair of the International Conference in Machine learning (ICML), and general chair in 2018; he is now co-editor-in-chief of the Journal of Machine Learning Research.