Physics-Aware Deep Learning for Optimal Power Flow

Friday, April 16, 2021 - 11:00am to 11:55am

Event Calendar Category

Other LIDS Events

Speaker Name

Vassilis Kekatos

Affiliation

Virginia Tech

Join Zoom meeting

https://mit.zoom.us/j/97460304229

Abstract

Distribution grids are currently challenged by the rampant integration of distributed energy resources (DER). Scheduling DERs via an optimal power flow problem (OPF) in real time and at scale under uncertainty is a formidable task. Prompted by the success of deep neural networks (DNNs) in other fields, this talk presents two learning-based schemes for near-optimal DER operation. The first solution engages a DNN to predict the solutions of an OPF given the anticipated demands and renewable generation. Different from the generic learning setup, the training dataset here (namely past OPF solutions) features rich yet largely unexploited structure. To leverage prior information, we train a DNN to match not only the OPF solutions, but also their partial derivatives with respect to the input parameters of the OPF. Sensitivity analyses for non-convex and convexified renditions of the OPF show how such derivatives can be readily computed from the OPF solutions. The proposed sensitivity-informed DNN features sample efficiency improvements at a modest computational increase. Nonetheless, this two-stage OPF-then-learn approach may not be suitable for DER operation when the OPF input parameters are changing rapidly. To deal with such setups, we put forth an alternative OPF-and-learn scheme. Here the DNN is not trained to mimic the OPF minimizers but is rather organically integrated into a stochastic OPF formulation. A key advantage of this second DNN is that it can be driven by partial OPF inputs or proxies being the measurements the utility can collect from the grid in real time.

 

Biography

Vassilis Kekatos is an Assistant Professor with the power systems group in the Bradley Dept. of ECE at Virginia Tech. He obtained his Ph.D. from the Univ. of Patras, Greece in 2007. He is a recipient of the US National Science Foundation CAREER Award in 2018 and the Marie Curie Fellowship during 2009-2012. He has been a postdoctoral research associate with the ECE Dept. at the Univ. of Minnesota, and a visiting researcher with the Univ. of Texas at Austin and the Ohio State Univ. His current research focus is on optimization and learning for future energy systems. He is currently serving on the editorial board of the IEEE Trans. on Smart Grid.