Remunerating Space-Time, Load-Shifting Flexibility from Data Centers in Electricity Markets

Monday, November 1, 2021 - 11:00am to 12:00pm

Event Calendar Category

Uncategorized

Speaker Name

Victor M. Zavala

Affiliation

University of Wisconsin–Madison

Zoom meeting id

974 6030 4229

Join Zoom meeting

https://mit.zoom.us/j/97460304229

Abstract

This talk discusses an electricity market clearing formulation that seeks to remunerate spatio-temporal, load-shifting flexibility provided by data centers (DaCes). Load-shifting flexibility is a key asset for power grid operators as they aim to integrate larger amounts of intermittent renewable power and to decarbonize the grid. Central to our study is the concept of virtual links, which provide non- physical pathways that can be used by DaCes to shift power loads (by shifting computing loads) across space and time. We use virtual links to show that the clearing formulation treats DaCes as prosumers that simultaneously request load and provide a load-shifting flexibility service. Our analysis also reveals that DaCes are remunerated for the provision of load-shifting flexibility based on nodal price differences (across space and time). We also show that DaCe flexibility helps relieve space-time price volatility and show that the clearing formulation satisfies fundamental economic properties that are expected from coordinated markets (e.g., provides a competitive equilibrium and achieves revenue adequacy and cost recovery). The concepts presented are applicable to other key market players that can offer space-time shifting flexibility such as distributed manufacturing facilities and storage systems. Case studies are presented to demonstrate these properties.

Biography

Victor M. Zavala is the Baldovin-DaPra Professor in the Department of Chemical and Biological Engineering at the University of Wisconsin-Madison and a computational mathematician in the Mathematics and Computer Science Division at Argonne National Laboratory. He holds a B.Sc. degree from Universidad Iberoamericana and a Ph.D. degree from Carnegie Mellon University, both in chemical engineering. He is on the editorial board of the Journal of Process Control, Mathematical Programming Computation, and Computers & Chemical engineering. He is a recipient of NSF and DOE Early Career awards and of the Presidential Early Career Award for Scientists and Engineers (PECASE). His research interests include statistics, control, and optimization and applications to energy and environmental systems.